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A critical part of Lagrangian-based methods for
Computational Fluid Dynamics (CFD) is the abil-
ity to remap or interpolate data from one compu-
tational mesh to another. This is the case for the
popular ALE schemes that perform Lagrangian
steps followed by remaps to fixed grids. Remap-
ping is also essential for pure Lagrangian meth-
ods, since they can lead to tangled grids that must
then be untangled with a concomitant remap step.
Even if the basic scheme produces only physi-
cally meaningful quantities, a remapping method
can create out-of-bounds quantities such as nega-
tive densities or pressures. In some CFD codes,
the offending values are simply set to a small
positive number when this occurs, at which point
mass or total energy is no longer conserved. Al-
though in most instances the error thereby created
is negligible, we have shown that in at least one
example the error is significant. It is possible, by
taking great care with the remapping in the CFD
context, to maintain positive mass density. This
is done by first extending the given mean den-
sities in each original cell to the whole domain
so that the new distribution is everywhere pos-
itive, and then computing new mean values by
exact integration over the cells of the new grid.
Total energy can be remapped in this way, but
then there is no guarantee that internal energy will
be positive. Furthermore, in more than one di-
mension, exact integration is computationally in-
tensive. Another context in which non-physical
data can occur is in divergence-free advection of
a concentration that must retain values between
zero and one. High quality advection schemes,
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Interaction of two blastwaves in a box — Initially
two half disks centered at X= (±0,5,0) have a
high energy compared to the interior of the box
— Left picture: t= 0.3, right picture: t= 0.8.

some of which are based on remapping ideas [1],
[2], unavoidably have this fault [3]. The goal in
this work is to improve upon and apply the re-
pair idea introduced in [4], [5]. A repair method
can be viewed as a way to correct values on a dis-
crete mesh by redistributing the conserved quan-
tity so that conservation and a maximum princi-
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ple are preserved. The maximum principle is that
new values should obey certain upper and lower
bounds obtained from old values. In this way
not only are non-physical quantities eliminated,
but oscillations are reduced (albeit not necessarily
eliminated). We therefore seek repair algorithms
that can be applied to CFD problems, advection
problems, or other situations where values of a
discrete variable must be placed in bounds with-
out violating a conservation law and without in-
troducing significant errors in the dynamics.
Repair methods can be used for many kinds
of variables, including density, velocity, energy,
pressure, and concentration. If we denote old
cells by c and new cells by ˜c, then the quan-
tity to be conserved is for example the total mass
m = ∑cm(c) = ∑c ρ(c)V(c), wherem(c), ρ(c),
andV(c) denote the mass, density, and volume,
respectively, of cellc.
Consider an old meshM with cell-averaged

densities, and a new mesh̃M with remapped
cell-averaged densities. The connectivity is the
same for the old and new grids, and typically
the new mesh is a small perturbation of the
old grid. If we define theboundneighborhood
N(c) of a cell c as a patch of surrounding cells,
we can define maximum and minimum density
bounds asρ+(c) = maxs∈N(c) ρ(s) and ρ-(c) =
mins∈N(c) ρ(s). (There are other reasonable ways
to define density bounds.) No matter how the
bounds are defined, there is a feasibility condi-
tion for repair to work at all.
The total massmmust not exceed (resp. be be-
low) the total upper bound mass (resp. the to-
tal lower bound mass), that is, the total mass
if each new cell were at its upper (resp. lower)
bound.
If a remapping process produces negative densi-
ties, or more generally produces out-of-bounds
densities, then a repair step must be done to make
these densities obey their bounds. The properties
to be fulfilled by a repair method are:
Conservation:

∑
c

m(c) = ∑
c

ρ(c)V(c) = ∑̃
c

ρ(c̃)V(c̃) = ∑̃
c

m(c̃)

Maximum principle:

∀c, ρ-(c)≤ ρ(c̃)≤ ρ+(c).

In this work we first reviewed a local repair
method [5] which repairs out-of-bounds values
and distributes the mass discrepancies locally.
This method can produce different results de-
pending on the order in which cells are vis-
ited, and it is therefore called order-dependent.
Next we reviewed a simple global repair pro-
cess ([4]) which repairs out-of-bounds values and
distributes the resulting mass discrepancy across
the entire grid. Then we introduced two order-
independent local methods but only one is well
suited for parallelization treatment. The idea of
this method is to repair as many cell as possi-
ble with a local treatment: first the upper bounds
(then the lower) with an iterative process (the
neighborhood being fixed). Then if some cells are
still out-of-bounds a global treatment is provided
to fix these cells.
Numerical tests are performed to show the effects
of such methods on advection and hydrodynam-
ics problems like the double non-symmetric blast-
wave solved with an ALE code where the repair
method is necessary for the code to produce a
physically meaningfull solution (see the figure).

Acknowledgements
Funded by the Department of Energy under contract W-

7405-ENG-36 Los Alamos Report LA-UR-04-0795.

References

[1] P.Colella. Multidimensional upwind methods for hy-
perbolic conservation laws.J.Comp.Phys, 87:171–200,
1990.

[2] J.K.Dukowicz and J.R.Baumgardner. Incremen-
tal remapping as a transport/advection algorithm.
J.Comp.Phys, 160:318–335, 2000.

[3] A.Oliveira and A.B.Fortunato. Toward an oscillation-
free, mass conservative, eulerian-lagrangian transport
model.J.Comp.Phys, 183:142–164, 2002.

[4] M.Shashkov and B.Wendroff. The repair paradigm
and application to conservation laws.J.Comp.Phys,
198:265–277, 2004.

http://math.lanl.gov/, T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

http://math.lanl.gov/


Mathematical Modeling and Analysis

[5] M.Kucharich M.Shashkov and B.Wendroff. An
efficient linearity-and-bound-preserving remapping
method.J.Comp.Phys, 188:462–471, 2003.

[6] R.Loubere M.Staley and B.Wendroff. The Repair
Paradigm: New Algorithms and Applications to Com-
pressible Flow. submitted to J.Comp.Phys, 2004
LAUR-04-XXXX.

http://math.lanl.gov/, T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

http://math.lanl.gov/

